Noncanonical Alternative Polyadenylation Contributes to Gene Regulation in Response to Hypoxia.
نویسندگان
چکیده
Stresses from various environmental challenges continually confront plants, and their responses are important for growth and survival. One molecular response to such challenges involves the alternative polyadenylation of mRNA. In plants, it is unclear how stress affects the production and fate of alternative mRNA isoforms. Using a genome-scale approach, we show that in Arabidopsis thaliana, hypoxia leads to increases in the number of mRNA isoforms with polyadenylated 3' ends that map to 5'-untranslated regions (UTRs), introns, and protein-coding regions. RNAs with 3' ends within protein-coding regions and introns were less stable than mRNAs that end at 3'-UTR poly(A) sites. Additionally, these RNA isoforms were underrepresented in polysomes isolated from control and hypoxic plants. By contrast, mRNA isoforms with 3' ends that lie within annotated 5'-UTRs were overrepresented in polysomes and were as stable as canonical mRNA isoforms. These results indicate that the generation of noncanonical mRNA isoforms is an important feature of the abiotic stress response. The finding that several noncanonical mRNA isoforms are relatively unstable suggests that the production of non-stop and intronic mRNA isoforms may represent a form of negative regulation in plants, providing a conceptual link with mechanisms that generate these isoforms (such as alternative polyadenylation) and RNA surveillance.
منابع مشابه
Noncanonical translation initiation of the Arabidopsis flowering time and alternative polyadenylation regulator FCA.
The RNA binding protein FCA regulates the floral transition and is required for silencing RNAs corresponding to specific noncoding sequences in the Arabidopsis thaliana genome. Through interaction with the canonical RNA 3' processing machinery, FCA affects alternative polyadenylation of many transcripts, including antisense RNAs at the locus encoding the floral repressor FLC. This potential for...
متن کاملAn unexpected ending: noncanonical 3' end processing mechanisms.
Proper 3' end processing of a nascent transcript is critical for the functionality of the mature RNA. Although it has long been thought that virtually all long RNA polymerase II transcripts terminate in a poly(A) tail that is generated by endonucleolytic cleavage followed by polyadenylation, noncanonical 3' end processing mechanisms have recently been identified at several gene loci. Unexpected...
متن کاملRNA-binding proteins implicated in the hypoxic response
In cells responding to low oxygen levels, gene expression patterns are strongly influenced by post-transcriptional processes. RNA-binding proteins (RBPs) are pivotal regulators of gene expression in response to numerous stresses, including hypoxia. Here, we review the RBPs that modulate mRNA turnover and translation in response to hypoxic challenge. The RBPs HuR (human antigen R) and PTB (polyp...
متن کاملPost-Transcriptional Control of the Hypoxic Response by RNA-Binding Proteins and MicroRNAs
Mammalian gene expression patterns change profoundly in response to low oxygen levels. These changes in gene expression programs are strongly influenced by post-transcriptional mechanisms mediated by mRNA-binding factors: RNA-binding proteins (RBPs) and microRNAs (miRNAs). Here, we review the RBPs and miRNAs that modulate mRNA turnover and translation in response to hypoxic challenge. RBPs such...
متن کاملComprehensive Polyadenylation Site Maps in Yeast and Human Reveal Pervasive Alternative Polyadenylation
The emerging discoveries on the link between polyadenylation and disease states underline the need to fully characterize genome-wide polyadenylation states. Here, we report comprehensive maps of global polyadenylation events in human and yeast generated using refinements to the Direct RNA Sequencing technology. This direct approach provides a quantitative view of genome-wide polyadenylation sta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 29 6 شماره
صفحات -
تاریخ انتشار 2017